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Abstract 

This paper aims to review the article "Regional Differences in Neuroinflammation-

Associated Gene Expression in the Brain of Sporadic Creutzfeldt–Jakob Disease Patients" by 

Areškeviciute, A.; Litman, T.; Broholm, H.; Melchior, L.C.; Nielsen, P.R.; Green, A.; 

Eriksen, J.O; Smith, C.; Lund, E.L1. This study sought to profile biological processes in the 

frontal cortex and cerebellum of sporadic CJD patients by analyzing the expression of 800 

neuroinflammation-associated genes using NanoString nCounter technology with the human 

neuroinflammation panel+. The analysis revealed distinct regional and sub-regional gene 

expression patterns, indicating a variable neuroinflammatory response that could not be 

attributed to the molecular subtypes of sporadic Creutzfeldt–Jakob disease. To build on these 

findings, I decided to utilize an R package called Limma (Linear Models for Microarray 

Data) to identify differentially expressed genes (DEGs) between sporadic CJD subtypes in 

addition to the analysis performed in the reviewed paper. I also developed a support vector 

machine (SVM) model to predict brain region and CJD occurrence based on the supplied 

NanoString data. The results still showed overlapping biological processes across different 

brain regions. Additionally, signature gene lists obtained from performing DEG analysis for 

the different subtypes potentially hint at variant expression levels of genes present within the 

panel. However, utilizing Limma resulted in a lower number of genes identified to be 

differentially expressed across all the analysis performed in the assessed study.  
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                                                           Introduction 

 

Neuroinflammation, characterized by the activation of microglia and astrocytes and 

the release of inflammatory mediators, plays a crucial role in prion diseases, including 

sporadic Creutzfeldt-Jakob Disease (sCJD) 2. Prion diseases are fatal neurodegenerative 

disorders caused by the accumulation of misfolded prion proteins (PrP^Sc), leading to 

neuronal damage and brain tissue spongiosis 3. sCJD, the most common form of prion 

disease, occurs spontaneously without known cause, presenting with rapidly progressive 

dementia, ataxia, myoclonus, and visual disturbances, often resulting in death within a year 4. 

Pathologically, sCJD is marked by spongiform changes, PrP^Sc accumulation, and 

significant neuroinflammatory responses 5. Diagnosis involves clinical assessment, exclusion 

of other dementias, detection of 14-3-3 protein in cerebrospinal fluid (CSF), and MRI 

findings, with definitive confirmation post-mortem 6. While there is no cure, research focuses 

on understanding disease mechanisms and exploring therapeutic interventions 7. Recent 

studies emphasize the importance of identifying differentially expressed genes (DEGs) linked 

to neuroinflammation and leveraging machine learning techniques like Support Vector 

Machines (SVM) for disease classification and prediction, aiming to improve diagnostic 

accuracy and treatment strategies 8. 

The reviewed paper uses RNA amplication-free facilitated by NanoString 

technologies which offered them a gene panel designed to represent the core processes of 

neuroinflammation. The authors identify differentially expressed genes using ANOVA. 

Using Limma for the analysis of differentially expressed genes (DEGs) is often more 

appropriate than ANOVA, particularly for RNA-seq and microarray data 9. Limma employs a 

linear modeling approach, which provides greater flexibility and power in handling complex 

experimental designs, including those with multiple conditions and small sample sizes 10. 
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Unlike ANOVA, which assumes normality and homogeneity of variances, Limma uses 

empirical Bayes methods to improve the estimation of variance, thus yielding more reliable 

statistical inferences 11. Additionally, Limma directly accommodates the estimation of false 

discovery rates (FDR) through the Benjamini-Hochberg procedure, which is crucial for 

multiple testing scenarios commonly encountered in gene expression studies 12. The 

combination of these features allows Limma to robustly identify DEGs while controlling for 

confounding factors, ultimately leading to more accurate and reproducible results. This 

makes Limma particularly well-suited for comprehensive analyses that require stringent 

statistical validation and exploration of complex biological questions 13. 

Neuroinflammation may vary significantly between different subtypes of Creutzfeldt-

Jakob Disease (CJD), potentially influencing disease progression and clinical outcomes. For 

instance, distinct patterns of microglial activation and cytokine profiles have been observed 

among sCJD subtypes, indicating that neuroinflammatory responses could be tailored to 

specific pathological features 14. Understanding these differences is crucial for developing 

targeted therapeutic strategies and improving patient management. Despite the small sample 

size provided, I utilized Limma to identify differentially expressed genes (DEGs) associated 

with neuroinflammation across the five subtypes of Creutzfeldt-Jakob Disease: MM1, 

MM1+2, MV1, MV2, and VV2.  

 

Figure 1 Flowchart depicting analysis of data matrix based on cases and control groups. 
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Exploratory Analysis: 

 

Support Vector Machines (SVM) are powerful tools for analyzing microarray data, 

offering robust classification capabilities in high-dimensional spaces. By constructing 

hyperplanes that effectively separate different classes of data, SVM can handle the 

complexity and inherent noise present in gene expression datasets 15. SVM is particularly 

advantageous for microarray studies because it can incorporate both linear and nonlinear 

relationships through the use of kernel functions, making it adaptable to various biological 

scenarios 16. Additionally, SVM can manage the challenges of small sample sizes relative to 

the number of features, a common issue in microarray experiments, by employing 

regularization techniques to prevent overfitting 17. This study implements this technique to  

predict brain region and CJD occurrence based on the supplied NanoString data. 

 

Results 

Variance Assessment  

Variance assessment of the data revealed that neither the histogram nor the Q-Q plot 

indicated a normal distribution of the gene expression values. The histogram displayed a 

skewed distribution, while the Q-Q plot deviated significantly from the reference line, 

suggesting that the data do not meet the assumptions of normality11. 
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Figure 2 presents a histogram of gene variances, illustrating the distribution of variances calculated 

from the expression data and highlighting the variability among genes in the dataset. The normal Q-Q plot 

shows a Q-Q plot of gene variances normality of the variance distribution. 

Regional Differences in Gene Expression and Hierarchical Clustering  

The expression analysis included the 265 most variable genes (Figure 3a). Those 

genes matched the genes presented in the reviewed paper. The results indicate a clear 

distinction between samples from the frontal cortex and cerebellum, as well as a notable 

separation between CJD and control cases. Hierarchical clustering was performed, and the 

resulting clusters appear to align with those reported in the paper. The clusters presented in 

the heatmap contains some samples that do not belong to the class labels (Figure 3b). 

a) 
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b) 

                                

Figure 3.  (a) Heatmap of the 265 most variable genes with clustering. ( X-axis Clusters  not highlighted but 

present on the Y-axis of the figure).(b) Clustering list.  
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In this review study, the same criteria for analyzing differentially expressed genes 

(DEGs) was adopted to ensure consistency with prior research. Three different analysis were 

of interest : identification of disease-specific, brain region non-exclusive DEGs that are 

common across both brain regions in sCJD samples compared to controls, disease-specific, 

brain region exclusive DEGs that are unique to each brain region in sCJD samples versus 

controls; and disease non-specific, brain region exclusive DEGs that are unique to a brain 

region regardless of sample type—whether sCJD or control. The main difference in this 

analysis is the implementation of the Limma package.  

DEG Exclusive and Non-Exclusive Assessment 

A list of differentially expressed genes (DEGs) was initially identified for samples 

from the frontal cortex, resulting in a list of 150 genes for an expression matrix comprised 

solely of frontal cortex cases and controls. A second list, containing 77 genes, was generated 

for samples from the cerebellum. Additionally, a non-exclusive list spanning both the frontal 

cortex and cerebellum (FC-CB) was identified, containing 110 genes. Among these, 72 genes 

were found to be common between the FC-exclusive and CB-exclusive DEGs (Figure 4)             

                

 

Figure 4. Venn diagram detailing the intersections between the two brain region exclusive lists. 
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The FC-exclusive signature was then obtained, revealing that 78 genes were uniquely 

differentially expressed in frontal cortex samples only. In contrast, the CB-exclusive 

signature was smaller, with 5 genes uniquely expressed between cases and controls for 

cerebellum samples. Heatmaps illustrated potential sub-regional differences, highlighting the 

distinct gene expression patterns in these brain regions (Figure 5). 

a) 

 

b) 
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c)  

 

Figure 5.  (a) Heatmap of FC samples relative to an FC exclusive signature. (b) Heatmap of CB 

samples relative to an CB exclusive signature. (c) Heatmap of FC and CB samples relative to an FC-CB 

deduced signature. 

DEG Exclusive Signature Assessment  

The FC-exclusive signature, with 78 genes, performed better across both brain 

regions. When the FC signature was applied to the CB samples, cases were well clustered 

into two case groups and one control group (Figure 6a). Conversely, when the CB signature 

was applied to the FC samples, the small number of genes (5) exclusive to the CB samples 

resulted in poor clustering of cases and controls (Figure 6b). The poor clustering observed 

with the CB-exclusive signature in the FC samples is likely due to the limited number of 

genes, which may not capture enough variability or distinct expression patterns. 
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a) 

 

 

b) 

 

Figure 5. (a) Clustering of cerebellum (CB) samples using the frontal cortex (FC)-exclusive signature. The FC-

exclusive signature, consisting of 78 genes, effectively clusters the CB samples into two case groups and one 

control group. (b) Clustering of frontal cortex (FC) samples using the cerebellum (CB)-exclusive signature. The 

CB-exclusive signature, with only 5 genes, results in poor clustering of the FC samples, failing to clearly 

distinguish between CJD cases and controls. 
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Sub-Regional Analysis 

In the study, sub-regional differences within both the frontal cortex (FC) and 

cerebellum (CB) samples of sporadic Creutzfeldt-Jakob Disease (sCJD) clusters were 

observed. The analysis defined the dendrogram to be cut into nine clusters, producing three 

clusters for FC cases (Figure 3a). For this analysis, clusters 7 and 9 were combined when 

fitting the model. This approach yielded a new signature list containing 41 genes that 

distinguish the two sCJD clusters from each other. Notably, 23% of these 41 genes 

overlapped with the 181-gene list reported in the paper (Figure 7). Additionally, the 

hierarchical clustering revealed two sub-regional clusters for the CB samples. The differential 

expression analysis identified one differentially expressed gene within the CB cluster, which 

was also present in the ANOVA analysis.

 

Figure 7. Heatmap detailing the clear clustering of CJD cases with Frontal Cortex origins. 
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CJD Sub-type Analysis 

The study included cases representing various subtypes of the disease: MM1, 

MM1+2, MV1, MV2, and VV2. Despite the limited sample size and the inherent imbalance 

among the subtype levels, differential gene expression (DEG) analyses were conducted for 

each subtype in comparison to the control group. Signature gene lists were derived for each 

subtype, highlighting distinct molecular profiles. These gene lists were subsequently 

visualized in an intersection plot (Figure 8), which illustrates the overlaps and unique 

signatures among the different disease subtypes, providing insights into the underlying 

biological processes associated with sporadic Creutzfeldt-Jakob Disease. 

 

 

Figure 8. UpSet plot to visualize the intersections among the DEG gene sets generated for each 

subtype. 
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Enrichment Analysis 

An enrichment analysis was conducted using Gene Ontology (GO) to identify 

biological processes significantly associated with the set of significant genes identified in this 

study. The analysis assessed whether the genes of interest were overrepresented in specific 

biological processes compared to what would be expected by chance. The enrichment plots 

highlight the biological processes relevant to the gene set, illustrating the number of genes 

associated with each process and their significance (Figure 9).  

a) 

  

b)  
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c) 

 

Figure 9.  (a) Gene Ontology (GO) enrichment analysis  for DEG signature list based of both FC and 

CB samples , (b) FC specific and  (c) CB specific. 

Network Buildup and Classification using SVM 

Co-expression network analysis was performed to identify genes exhibiting similar 

expression patterns in the frontal cortex (FC) and cerebellum (CB). This analysis aimed to 

uncover co-expressed gene groups, investigate their functional relationships, and compare 

network structures between the two brain regions (Figure 10)  

a)                                                                   b) 

  

Figure 9. (a)  Network Structure for FC and CB sCJD cases and (b) CJD vs control samples. 

Additionally, support vector machine (SVM) models were developed to predict brain 

regions and distinguish brain regions of sample and CJD occurence. The findings reveal 
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significant differences and similarities in co-expression patterns for predicting brain region 

and disease incidence from NanoString data. 

a) 

 

b) 

 

Figure 11. (a)  Brain region SVM prediction results (b) CJD vs control samples SVM prediction 

results 

 

                                                           Discussion  

 

The variation displayed a skewed distribution, while the Q-Q plot deviated 

significantly from the reference line, suggesting that the data do not meet the assumptions of 

normality. As a result, traditional ANOVA would not be suitable for this analysis; instead, 

the use of the Limma package is more appropriate, as it accommodates the non-normality of 

the data and provides robust statistical methods for differential expression analysis ¹⁰. 
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Implementing Limma instead of ANOVA generated a smaller number of differentially 

expressed genes (Figure 10). 

 

Figure 12.   Table presenting the number of genes outputted from each analysis in comparison the 

ANOVA approach implemented in the study. 

The clustering results appear to match what is published in the study by Areškeviciute 

et al. Additionally, the signature lists generally matched the listed provided by using 

ANOVA. Gene Ontology enrichment analysis did provide some key biological processes that 

stem in neuroinflammation. The biological pathways identified in the differential expression 

analysis for CJD to control cases are intricately linked to neuroinflammation. The adaptive 

immune response, involving somatic cells, plays a crucial role in orchestrating immune 

activity in the brain, potentially exacerbating neuronal damage during CJD 18. The 

recombination of immune receptors from the immunoglobulin superfamily enables diverse 

antibody production, which can lead to chronic inflammation if dysregulated 19. Leukocyte-

mediated immunity is vital for immune surveillance, but excessive infiltration can worsen 

neuroinflammatory conditions 20. Similarly, lymphocyte-mediated immunity reflects a 

delicate balance; pro-inflammatory T cells may contribute to neurodegeneration 21. 

Furthermore, the differentiation of mononuclear cells such as microglia is essential in 

regulating inflammation, with certain phenotypes promoting injury 22. Lastly, phagocytosis is 

critical for clearing debris in the CNS; impaired function can lead to toxic accumulation, 
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further driving neuroinflammation 23. Together, these processes highlight the complex 

interplay between immune responses and neuroinflammation in the context of CJD. 

 

           The observation that MV2, MM1+2, and MM1 share the most differentially expressed 

genes (DEGs) can be attributed to their overlapping pathological mechanisms and molecular 

characteristics. These subtypes may exhibit similar neuroinflammatory responses, 

contributing to their shared gene expression profiles. For instance, MV2 has been associated 

with a heightened immune response and neuroinflammation, which can overlap with the 

characteristics observed in MM1 and MM1+2, potentially leading to a convergence in gene 

expression patterns 24. This similarity suggests that these subtypes might activate common 

biological pathways, such as those related to immune activation and synaptic dysfunction, 

reinforcing the notion of a shared neurodegenerative process among them 25. Additionally, 

the presence of common genetic alterations or similar pathological hallmarks could further 

explain the significant overlap in their DEG profiles, indicating that these subtypes may not 

only share clinical features but also molecular signatures that reflect their underlying disease 

mechanisms 26. 

Support vector machine (SVM) models were developed to predict brain regions and 

distinguish brain regions of sample and CJD occurrence The results indicate that the linear 

SVM performed optimally for determining brain regions, while the polynomial SVM yielded 

the best performance for distinguishing CJD from control cases. These findings underscore 

the effectiveness of SVM modeling in analyzing complex biological data, such as that 

obtained from NanoString assays. By leveraging SVMs, researchers can potentialy classify 

samples based on gene expression profiles, facilitating the identification of distinct brain 

regions and disease states. This approach not only enhances our understanding of 

neurobiological processes but also aids in developing targeted therapeutic strategies. 
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                                                           Materials and Methods 

This review was designed to work on the supplementary material provided for the 

reviewed paper. Sample collection, preparation and data adjustment can be reviewed in the 

reviewed paper1. The reviewed paper identified differentially expressed genes between 

groups using ANOVA with a significance threshold of p < 0.05, adjusting for multiple testing 

by estimating the false discovery rate (FDR) . This analysis follows a similar framework but 

utilizes the limma package in R instead of ANOVA for the identification of differentially 

expressed genes. In this approach, a gene is considered differentially expressed if the p value 

is less than 0.05 (p < 0.05) and the log2-fold change exceeds 1 (log2FC > 1), maintaining 

consistency with the reviewed study's criteria while benefiting from the statistical advantages 

offered by limma. Additionally, the analysis included support vector machine (SVM) 

modeling to predict brain regions and distinguish between CJD and control samples. 

However, the small sample size poses a challenge, as SVM can be sensitive to limited data, 

potentially leading to overfitting and affecting generalizability. To mitigate these issues, 

strategies such as feature selection, regularization, and cross-validation were implemented. 

                                                           Conclusion 

This study highlights the challenges posed by non-normal data distributions in 

differential gene expression analysis, leading to the adoption of the Limma package over 

traditional ANOVA. The results indicate a smaller number of differentially expressed genes 

(DEGs) and confirm clustering outcomes consistent with previous research. Key biological 

processes linked to neuroinflammation were identified, including adaptive immune responses 

and the role of leukocyte-mediated immunity, emphasizing their potential impact on neuronal 

damage in CJD. The overlapping DEG profiles among subtypes MV2, MM1, and MM1+2 

suggest shared pathological mechanisms, underscoring common biological pathways 

involved in neurodegeneration. 
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Furthermore, the application of support vector machine (SVM) models demonstrated 

their potential efficacy in predicting brain regions and distinguishing between CJD and 

control samples. The optimal performance of linear SVM for regional classification and 

polynomial SVM for disease differentiation highlights the utility of advanced modeling 

techniques in complex biological analyses. Overall, these findings contribute to a deeper 

understanding of neuroinflammatory processes and offer insights for developing targeted 

therapeutic strategies. 
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